Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(58): e202301129, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37702118

RESUMO

Metal-organic frameworks (MOFs) are promising electrocatalysts for clean energy conversion systems. However, developing MOF-based electrodes with high performance toward oxygen evolution reaction (OER) is still challenging. In this work, a series of MOF film electrodes derived from Ni-btz were prepared by employing the secondary growth strategy under solvothermal conditions. Fe and Co ions were also incorporated into the Ni-btz framework to produce a trimetallic coupling effect to obtain enhanced OER activity. The as-prepared FeCoNi-btz/NF exhibited not only good stability but also excellent OER performance under alkaline conditions. Furthermore, the possible intermediates including metal oxides and metal oxyhydroxides were confirmed by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM).

2.
Small ; 19(52): e2304989, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37626453

RESUMO

The calixarenes are ideal building blocks for constructing photocatalytic covalent organic frameworks (COFs), owing to their electron-rich and bowl-shaped π cavities that endow them with electron-donating and adsorption properties. However, the synthesis and structural confirmation of COFs based on calixarenes are still challenging due to their structural flexibility and conformational diversity. In this study, a calix[4]arene-derived 2D COF is synthesized using 5,11,17,23-tetrakis(p-formyl)-25,26,27,28-tetrahydroxycalix[4]arene (CHO-C4A) as the electron donor and 4,7-bis(4-aminophenyl)-2,1,3-benzothiadiazole (BTD) as the acceptor. The powder X-ray diffraction data and theoretical simulation of crystal structure indicate that COF-C4A-BTD exhibits high crystallinity and features a non-interpenetrating undulating 2D layered structure with AA-stacking. The density functional theory theoretical calculation, transient-state photocurrent tests, and electrochemical impedance spectroscopy confirm the intramolecular charge transfer behavior of COF-C4A-BTD with a donor-acceptor structure, leading to its superior visible-light-driven photocatalytic activity. COF-C4A-BTD exhibits a narrow band gap of 1.99 eV and a conduction band energy of -0.37 V versus normal hydrogen electrode. The appropriate energy band structure can facilitate the participation of ·O2- and h+ . COF-C4A-BTD demonstrates high efficacy in removing organic pollutants, such as bisphenol A, rhodamine B, and methylene blue, with removal rates of 66%, 85%, and 99% respectively.

3.
Chem Commun (Camb) ; 59(32): 4766-4769, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36995144

RESUMO

Platinum is recognized as an effective electrochemical catalyst for hydrogen generation. Herein, a novel porous aromatic framework (PAF-99) is synthesized and two strategies including in situ preparation and post-synthesis are applied to introduce uniform platinum nanoparticles into PAF-99. The obtained platinum electrocatalysts (Pt-PAF-99 and Pt@PAF-99) exhibit great and distinct performances towards the hydrogen evolution reaction.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36762589

RESUMO

Porous aromatic frameworks (PAFs) with rich metal coordination sites are highly effective support materials for gold nanoparticles (AuNPs), which would not only prevent AuNPs agglomeration but also facilitate mass transfer during the catalytic process. In this work, PAF-160, -161, and -162 bearing diphosphine units are synthesized via the Friedel-Crafts alkylation reaction to act as efficient platforms for AuNPs immobilization. These PAFs possess high surface areas (up to 655 m2 g-1) together with excellent stabilities, and the different linkage lengths between P centers allow more scattered and accessible sites for gold coordination. In the resultant Au-PAFs, AuNPs with uniform sizes are stabilized dispersedly. The catalytic performances of these Au-PAFs are monitored by the reduction of 4-nitrophenol (4-NP), and all materials exhibit excellent catalytic activities on the reduction of 4-NP, especially Au-PAF-162 with the apparent rate constant (kapp) up to 0.019 s-1. Additionally, the reductions of various nitroarenes with different functional groups are explored and all Au-PAFs can convert most nitroaromatic derivatives to the corresponding arylamines with high conversions of 99%, in which the reaction mechanism is also proposed. Furthermore, a continuous catalytic device with Au-PAF-160 catalyst is explored, and Au-PAF-160 can convert 1-chloro-4-nitrobenzene, 2,6-dichoronitrobenzene and 1-chloro-2,4-dinitrobenzene into the corresponding amines in sequence in the continuous flow catalytic experiments. This work has enriched the variety of porous materials for noble metal immobilization and promotes their applications in heterogeneous catalysis.

5.
ACS Appl Mater Interfaces ; 14(41): 47126-47135, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36202176

RESUMO

Efficient capture of radioiodine from aqueous solutions is of importance for sustainable development of nuclear energy and protection of the environment. However, current adsorbents under exploration suffer from limited adsorption capacity and powder form that are unfavorable for practical applications. Herein, we applied a "multi-functionalization integration" idea to construct novel electrospun fiber adsorbents (N-MOF-PAN fibers) containing cationic quaternary ammonium groups, uncharged amine groups, and porous MOF material (UiO-66-NH2), which in synergy adsorb iodine effectively from both saturated I2 aqueous solution and I3- aqueous solution. Iodine species (94.6%) could be removed from saturated I2 solution within 180 min, and 98.7% of iodine species were captured from I3- solution within 240 min. Additionally, the N-MOF-PAN fibers exhibited high iodine uptake capacities of 3.56 g g-1 from a concentrated KI/I2 aqueous solution and 3.61 g g-1 from the Langmuir isotherm model, surpassing many reported iodine adsorbents in the aqueous medium. Characterization and mechanism analysis indicated that multiple active sites simultaneously attribute to the high binding affinity toward iodine species through physical adsorption and chemical adsorption. Furthermore, benefiting from their macroscopic architecture, N-MOF-PAN fibers were used as the adsorption column for dynamic iodine capture with a bed volume of 1490 mL, which is much higher than commercially activated carbons. Overall, this work provides guidance for the development of novel fiber adsorbents for related applications.

6.
Adv Sci (Weinh) ; 9(30): e2203712, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36050878

RESUMO

Metal-organic frameworks (MOFs) are recognized as promising electrocatalysts for the oxygen evolution reaction (OER) because of their permanent porosity and rich architectural diversity; however, ionic MOFs enabling fast ions exchange during OER are rarely explored. Here, an ionic MOF (Ni-btz) constructed with an azolate ligand is selected, and continuous 3D bimetallic MOF (NiFe-btz) films deriving from high-degree intergrowth of microsized MOFs particles are fabricated. The as-prepared NiFe-btz/NF-OH electrode exhibits excellent OER performance with a low overpotential of 239 mV at 10 mA cm-2 under alkaline condition. The OER charge transfer process and bimetallic coupling effect in ionic NiFe-btz are probed by density functional theory calculations and confirmed via X-ray photoelectron spectroscopy and in situ Raman measurements. The partial density of states of NiFe-btz indicates that the main contribution for electron density around the Fermi level is from Cl ions clarifying the profitable impact of ionic MOF framework. This work systematically demonstrates the relationship of electronic structure and OER activity in ionic, bimetallic MOFs and expands the scope of 3D MOF films for efficient OER.

7.
Materials (Basel) ; 15(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36013737

RESUMO

In the present work, the performance of ultra-high molecular weight polyethylene (UHMWPE) barrier nets in marine environments is investigated by Fourier transform infrared spectroscopy, thermogravimetry, scanning electron microscopy, and tensile experiments. The chemical, morphological, thermal stability, and strength changes after aging in salt spray, hygrothermal, and ultraviolet (UV) environments are characterized. An environmental spectrum is designed to simulate a real service environment and predict the service life of UHMWPE. The results show that UV energy can activate UHMWPE molecules and lead to chain breaking, which lowers the breaking strength more efficiently than salt spray. In a hygrothermal environment, the UHMPE fibers bond into clumps, which causes a slight increase in breaking strength after the initial rapid decrease with aging time. The acceleration ratio of the environmental spectrum increases with increasing aging time, which may be caused by the cross-linking and degradation of macromolecular chains in the material. The environmental spectrum given by this work can be used to evaluate performance and predict the service life of UHMWPE barrier nets in marine environments.

8.
ACS Appl Mater Interfaces ; 14(22): 25601-25608, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35618663

RESUMO

Extraction of valuable metals such as gold from electronic wastes (e-waste) is regarded as a promising way of environmental remediation; however, this process is still confronted with the cost-ineffective product for normal usages like electronic devices or jewelry. Therefore, there would be merits in directly converting gold from e-waste to materials of higher value, for example, catalysts for pollutant treatment. Herein, a porous aromatic framework (PAF) with cationic sites, named iPAF-7, was synthesized and exhibited rapid extraction of gold from e-waste. Au@iPAF-7 completely converted nitroarenes to arylamines within 10 s at a rate constant of 7.8 × 10-2 s-1, which is much higher than that of any other gold nanoparticle (AuNP) catalysts with solid supports reported so far. Furthermore, considering the limitations and difficulties of operating powder materials, the aerogel monolith incorporating iPAF-7 was successfully fabricated, which retained the excellent gold extraction ability and catalytic activity of its powder form, thus exhibiting its potential application for continuous-flow catalysis of nitroarene reduction.

9.
Anal Chim Acta ; 1209: 339876, 2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35569839

RESUMO

Owing to the desirable structures, covalent organic frameworks (COFs) have emerged as promising porous crystalline materials in bioanalytical and biomedical science. However, the application of their merits for analysis of hydrophobic peptides in complicated bio-samples has not been well investigated, possibly due to challenges in developing materials with high-specific binding effect of target peptides and accurate controllable pore-size for high selectivity. In this study, we proposed the size-exclusive peptide enrichment with Azo-COF constructed from 1,3,6,8-tetrabromopyrene (TBPy) building block and p-azoaniline linking units. The as-synthesized sieve-like COFs show high surface area together with accessible nanometer pore size (∼2.5 nm). With these advantages, specific enrichment of hydrophobic peptides using Azo-COF can be achieved by simply packing them in a 100 µL Axygen pipette tip. A maximum capacity of 36 mg g-1 for FGFGF was obtained, which is more than a magnitude order larger than those of hydrophilic peptides. Furthermore, this method was successfully applied in analysis of hydrophobic peptides in tryptic digest of proteins and real human serum samples, indicating that the proposed method is promising for high-selective peptides enrichment from complex biological samples, and is of great value for further application of the functional materials in bioanalysis.


Assuntos
Estruturas Metalorgânicas , Glicopeptídeos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estruturas Metalorgânicas/química , Peptídeos , Pirenos
10.
Dalton Trans ; 51(12): 4853-4861, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35258063

RESUMO

Due to the slow reaction kinetics of the oxygen evolution reaction (OER), the electrolysis rate of water is greatly limited. Therefore, it is of great significance to study stable and efficient non-noble metal based electrocatalysts. In this paper, three-dimensional (3D) spherical V-NiFe LDH@Ni3S2 was developed by exquisitely decorating ultra-thin V-doped NiFe layered dihydroxide (NiFe-LDH) on Ni3S2 nanosheets supported by nickel foam (NF). It is worth mentioning that V-NiFe LDH@Ni3S2 exhibits an excellent electrocatalytic performance and only 178 mV overpotential is required in 1 M KOH to achieve a current density of 10 mA cm-2. Long-term chronoamperometry manifests its superior electrochemical stability. The combination of NiFe LDH and conductive substrate coupling can drastically afford abundant active sites and accelerate charge transfer, and V doping can markedly regulate the electronic structure. Therefore, the activity and durability of the electrocatalysts are greatly improved. This study may provide a new strategy for the preparation of efficient OER electrocatalysts.

11.
J Colloid Interface Sci ; 615: 256-264, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35134480

RESUMO

Electrochemical water splitting, which is considered to be one of the fruitful strategies to achieve efficient and pollution-free hydrogen production, has been deemed as a key technology to achieve renewable energy conversion. Oxygen evolution reaction (OER) is a decisive step in water splitting. Slow kinetics seriously limits the effective utilization of energy thus it is extremely urgent to develop electrocatalysts that can effectively reduce the reaction energy barrier thus accelerate OER kinetics. Here, Mn-Co0.85Se/NiSe2/NF nanosheets with 3D folded structure was assembled on Ni foam by electrodeposition and vapor-deposition method. Mn-Co0.85Se/NiSe2/NF can achieve a current density of 10 mA cm-2 with only 175 mV overpotential in an alkaline environment of 1 M KOH, which is much lower than other reported catalysts. In addition, catalyst Mn-Co0.85Se/NiSe2/NF also performed well in long-term stability tests. Through the synergy of polymetallic, the improvement of catalyst surface energy together with the tuning of electronic structure and the optimization of conductivity can be realized. This work may provide a feasible strategy for the design of efficient selenide-based oxygen evolution reaction catalysts.

12.
Angew Chem Int Ed Engl ; 61(1): e202113682, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34687128

RESUMO

Continuous microporous membranes are widely studied for gas separation, due to their low energy premium and strong molecular specificity. Porous aromatic frameworks (PAFs) with their exceptional stability and structural flexibility are suited to a wide range of separations. Main-stream PAF-based membranes are usually prepared with polymeric matrices, but their discrete entities and boundary defects weaken their selectivity and permeability. The synthesis of continuous PAF membranes is still a major challenge because PAFs are insoluble. Herein, we successfully synthesized a continuous PAF membrane for gas separation. Both pore size and chemistry of the PAF membrane were modified by ion-exchange, resulting in good selectivity and permeance for the gas mixtures H2 /N2 and CO2 /N2 . The membrane with Br- as a counter ion in the framework exhibited a H2 /N2 selectivity of 72.7 with a H2 permeance of 51844 gas permeation units (GPU). When the counter ions were replaced by BF4 - , the membrane showed a CO2 permeance of 23058 GPU, and an optimized CO2 /N2 selectivity of 60.0. Our results show that continuous PAF membranes with modifiable pores are promising for various gas separation situations.

13.
Dalton Trans ; 49(37): 13152-13159, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32935698

RESUMO

It is of extreme importance to design efficient electrocatalysts for hydrogen evolution reaction (HER), which is considered as a promising approach to provide efficient and renewable clean fuel (hydrogen). Tuning the electronic structure through heteroatom doping demonstrates one of the most effective strategies to promote the electrocatalytic performance of HER. Herein, phosphorus-doping modulation is utilized to fabricate monoclinic P-CoMoO4 with optimized electron structure supported on nickel foam (P-CoMoO4/NF) for alkaline HER via a facile hydrothermal method, followed by low-temperature phosphidation. Notably, P-CoMoO4/NF shows outstanding electrocatalytic performance for HER in 1 M KOH with a low overpotential of 89 mV at 10 mA cm-2, a remarkable Tafel slope value of 59 mV dec-1, and excellent 24 h-long stability. The excellent catalyst activity and stability merits of P-CoMoO4/NF are comparable to the reported highly efficient non-precious metal HER electrocatalysts and could be applied as a powerful electrocatalyst in water electrolysis. This work provides a superior synthesis strategy for the effective design and rational fabrication of low-cost, highly active, and highly stable non-precious metal HER electrocatalysts for electricity-to-hydrogen applications.

14.
ACS Appl Mater Interfaces ; 12(27): 30474-30482, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32588621

RESUMO

Extracting gold from wastes of electronic equipment (e-waste) is a sustainable strategy for the recovery of the precious metal, reducing environmental pollution, and addressing the growing demands for gold resources. In this work, we synthesized a thiourea-modified porous aromatic framework (PAF-1-thiourea) with exceptional gold-extraction ability. The optimum adsorption capacity for PAF-1-thiourea to gold reaches up to 2629.87 mg g-1. The adsorption process can be well fitted according to the pseudo-second-order kinetic model and Langmuir model, featuring strong affinity caused by strong soft-soft interactions between Au(III) and the S and N donor atoms of the modified PAF and the electrostatic interactions between protonated amino groups and AuCl4-. PAF-1-thiourea was especially capable of extracting gold rapidly and efficiently (capturing 98.73% of gold within 5 min) from a central processing unit (CPU) in extremely acidic conditions. It is found that PAF-1-thiourea captures gold ions and simultaneously converts it to a Au(0) solid, obtaining gold with purity up to 23.5 karat. PAF-1-thiourea with its high acid resistance and anti-interference against cheap metals in the recovery process presents a practical means to extract gold from e-waste.

15.
Adv Mater ; 31(40): e1902444, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31418940

RESUMO

Compositional catalysts based on porous supports and incorporated catalytic nanoparticles have achieved great successes during the past decades. However, rational design of synergic catalysts and modulating the interactions between functional supports and catalytic sites are still far from being well developed. In this work, aiming at overcoming the difficulties of comprehensive screening of porous supports and correspondingly matched catalytic sites, a cationic porous aromatic framework as a capturing platform and polyoxometalate anions as conversion materials are separately designed, and their combination is modularly controlled. The resulting composites show higher catalytic activities than the corresponding conversion sites themselves. Notably, the resulting composites uncommonly exhibit increased surface area and enlarged pore openings after the incorporation of nanoparticles, and lead to the promotion of mass transfer within the porous supports. The emergence of a hierarchical structure with increased surface area induced by guest loading is desired in heterogeneous catalysis. The reciprocal modulation of both capture and conversion materials results in enhanced conversion and increased reaction rate, indicating the successful preparation of synergic catalysts by this separate design approach.

16.
Artigo em Inglês | MEDLINE | ID: mdl-30917516

RESUMO

Rainfall has been identified as one of the main causes for slope failures in areas where high annual rainfall is experienced. The slope angle is important for its stability during rainfall. This paper aimed to determine the impact of the angle of soil slope on the migration of wetting front in rainfall. The results proved that under the same rainfall condition, more runoff was generated with the increase of slope angle, which resulted in more serious erosion of the soil and the ascent of wetting front. A modified Green-Ampt (GA) model of wetting front was also proposed considering the seepage in the saturated zone and the slope angle. These findings will provide insights into the rainfall-induced failure of soil slopes in terms of angle.


Assuntos
Modelos Teóricos , Chuva , Solo , China , Movimentos da Água
17.
Chemistry ; 20(29): 9073-80, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24919582

RESUMO

Three isoreticular metal-organic frameworks, JUC-100, JUC-103 and JUC-106, were synthesized by connecting six-node dendritic ligands to a [Zn4O(CO2)6] cluster. JUC-103 and JUC-106 have additional methyl and ethyl groups, respectively, in the pores with respect to JUC-100. The uptake measurements of the three MOFs for CH4, C2H4, C2H6 and C3H8 were carried out. At 298 K, 1 atm, JUC-103 has relatively high CH4 uptake, but JUC-100 is the best at 273 K, 1 atm. JUC-100 and JUC-103 have similar C2H4 absorption ability. In addition, JUC-100 has the best absorption capacity for C2H6 and C3H8. These results suggest that high surface area and appropriate pore size are important factors for gas uptake. Furthermore, ideal adsorbed solution theory (IAST) analyses show that all three MOFs have good C3H8/CH4 and C2H6/CH4 selectivities for an equimolar quaternary CH4/C2H4/C2H6/C3H8 gas mixture maintained at isothermal conditions at 298 K, and JUC-106 has the best C2H6/CH4 selectivity. The breakthrough simulations indicate that all three MOFs have good capability for separating C2 hydrocarbons from C3 hydrocarbons. The pulse chromatographic simulations also indicate that all three MOFs are able to separate CH4/C2 H4/C2H6/C3H8 mixture into three different fractions of C1, C2 and C3 hydrocarbons.

18.
J Am Chem Soc ; 136(6): 2432-40, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24456083

RESUMO

The elimination of specific environmental and industrial contaminants, which are hazardous at only part per million to part per billion concentrations, poses a significant technological challenge. Adsorptive materials designed for such processes must be engendered with an exceptionally high enthalpy of adsorption for the analyte of interest. Rather than relying on a single strong interaction, the use of multiple chemical interactions is an emerging strategy for achieving this requisite physical parameter. Herein, we describe an efficient, catalytic synthesis of diamondoid porous organic polymers densely functionalized with carboxylic acids. Physical parameters such as pore size distribution, application of these materials to low-pressure ammonia adsorption, and comparison with analogous materials featuring functional groups of varying acidity are presented. In particular, BPP-5, which features a multiply interpenetrated structure dominated by <6 Å pores, is shown to exhibit an uptake of 17.7 mmol/g at 1 bar, the highest capacity yet demonstrated for a readily recyclable material. A complementary framework, BPP-7, features slightly larger pore sizes, and the resulting improvement in uptake kinetics allows for efficient adsorption at low pressure (3.15 mmol/g at 480 ppm). Overall, the data strongly suggest that the spatial arrangement of acidic sites allows for cooperative behavior, which leads to enhanced NH3 adsorption.

19.
Adv Mater ; 25(45): 6619-24, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24106009

RESUMO

Novel quaternary pyridinium-type porous aromatic frameworks, PAF-50, and their composites, AgCl-PAF-50, have been synthesized to effectively and efficiently inhibit the growth of bacteria. Most importantly, both PAF-50 and AgCl-PAF-50 have excellent compatibility with conventional polymers, which lead to great operation flexibility and versatility for antibactrial coatings on various medical devices simply via solution or spray coating.


Assuntos
Antibacterianos/química , Polímeros/química , Antibacterianos/farmacologia , Porosidade , Compostos de Piridínio/síntese química , Compostos de Piridínio/química , Compostos de Prata/química , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
20.
Chem Commun (Camb) ; 47(22): 6389-91, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21552587

RESUMO

A novel 2D porous organic framework based on the nucleophilic substitution of cyanuric chloride has been designed and synthesized successfully, which possesses an ordered structure, permanent porosity and drug release ability towards ibuprofen.


Assuntos
Portadores de Fármacos/química , Ibuprofeno/química , Triazinas/síntese química , Portadores de Fármacos/síntese química , Porosidade , Triazinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...